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Abstract

Type space is of fundamental importance in epistemic game theory. This paper

shows how to build type space if players approach the game in a way advocated by

Bernheim’s justification procedure. If an agent fixes a strategy profile of her opponents

and ponders which of their beliefs about her set of strategies make this profile opti-

mal, such an analysis is represented by kernels and yields disintegrable beliefs. Our

construction requires that underlying space is Polish.
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1 Introduction

Fix a game played by Ann and Bob with their strategy sets, Sa and Sb, respectively. Ann’s

first-order belief is her conjecture over Bob’s choices. It is natural to assume that Bob ponders

Ann’s strategies, as well, and that Ann knows this. Hence, she tries to link Bob’s alternatives

with his first-order beliefs. Ann fixes Bob’s strategy, sb, and selects his conjectures that make

sb optimal. Bob conducts the same analysis and, in consequence, we obtain infinite structures

representing the players’ thinking about the game. This way of interactive reasoning lies

behind the concept of rationalizability introduced by Bernheim (1984) and Pearce (1984).

According to the former:

Since the state of the world, as perceived by A, is uncertain, he must construct

some assessment of B’s action and optimize accordingly. (...) A knows that B

has an assessment of what A will do for which B’s strategy is a best response.

(...) A must not only have an assessment of what B will do subject to which

A’s choice is a best response, but for every forecast of B’s strategy to which A

ascribes positive probability, A must also be able to construct some conjecture of

B’s assessment of A’s action, for which this forecast of B’s strategy is a best

response. Since conformity with Savage’s axioms is common knowledge, this

reasoning can be extended indefinitely. If it is possible to justify the choice of a

particular strategy by constructing infinite sequence of self-justifying conjectured

assessments in this way, then I call the strategy ”rationalizable.”

The infinite hierarchy of beliefs and type space were introduced by Harsanyi (1967/8) (see

Myerson (2004) for a non-technical review). Type space is an essential tool of epistemic game

theory (see a recent three-article survey by Brandenburger Brandenburger (2008), Heifetz

(2008), and Siniscalchi (2008)). In particular, we want to know whether the collection

of all of Ann’s hierarchies, T a, and the space of her beliefs over Sb × T b, P a(Sb × T b),

are homeomorphic. Proving this establishes the existence of the universal type space (see

Siniscalchi (2008) and Friedenberg (2010) for discussion of universal, terminal, and complete

type spaces). Coherency of agents’ conjectures is a minimal condition. That is, we require

the higher and lower order beliefs to agree on appropriate spaces. If this is not true, then

it is impossible for an infinite hierarchy to induce a unique belief over Sb × T b. However,

coherency is not enough, as is shown by Heifetz and Samet (1999). Their result is based

on violating topological assumptions in the Kolmogorov Extension Theorem. In order to

obtain a positive answer, we need to introduce restriction on either underlying space or on

2



agents’ hierarchies. Mertens and Zamir (1985) and Brandenburger and Dekel (1993) focus on

topological constraints. The former assumes the space of uncertainty to be compact, while

the latter considers a Polish space. In Heifetz (1993), that space is Hausdorff, and agents’

beliefs are defined as regular probability measures.

Our construction of the universal type space is based on reconceptualizing the idea of an

agent’s belief. We want to capture Bernheim’s justification procedure leading to rationaliz-

ability. Ann’s first-order belief is defined as a probability, λa, over the set of Bob’s strategies,

Sb. However, instead of defining higher-order beliefs in a standard way directly on product

spaces, we use the notion of a kernel. A second level of Ann’s hierarchy consists of a family

of kernels between Sb and P b(Sa). For each of Bob’s strategies, sb, a kernel, ν, assigns Ann’s

conjecture, ν(sb), over the set of Bob’s first-order beliefs, P b(Sa). As Bernheim noted, “A

must also be able to construct some conjecture of B’s assessment of A’s action, for which

this forecast of B’s strategy is a best response.” Ann’s belief, λa, and kernel, ν, generate a

unique belief over Sb × P b(Sa). The collection of kernels that constitutes the second-order

belief is determined by the notion of equivalency. We say that ν and ṽ are equivalent with

respect to λa, if they are the same except for the set of measure zero. Our belief is called a

kernel-based belief , since kernel constitutes the basis of our construction.

In the standard formulation of type spaces, the belief is a probability directly defined on

a product space, X × Y . If such a standard belief can be reconstructed from some kernel

between X and Y and a measure on X, then we say that it is a disintegrable probability. In

our construction, kernels are the primitives of the model. In consequence, the kernel-based

belief generates probability on X×Y which satisfies the disintegrability condition by default.

This restricted definition of belief is the price we must pay in order to capture Bernheim’s

procedure.

The model we propose also applies to a more general case in which the parameter set is

common to both agents. In fact, we conduct our analysis and proofs in this setup. As

usual, we begin with Ann’s first-order belief, λa ∈ P (S). Next, Ann ponders the relationship

between the parameter set, S, and the set of Bob’s first-order conjectures, P b(S). She

builds a kernel, v, between S and P b(S) by assigning conjecture, ν(s), over P b(S) for each

s. Naturally, if we presume that the parameters and agents’ beliefs are independent, and

that this fact is commonly known to the agents, then our construction and the constructions

offered in previously mentioned papers are overly complex and even unnecessary. In such a

case, Ann’s conjectures are directly defined on spaces S, P b(S), P b(P a(S)), etc. However,

independence is only a special case of the general type space formulation.
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In order to prove the existence of the universal type space, we assume that the underlying

space of uncertainty is Polish. The key property we use in the proof of existence is co-

herency. This says that the family of kernels at the nth level of hierarchy is equivalent with

respect to the measure induced by the first n− 1 levels of that hierarchy.

In Section 2, we review the concept of kernel and indicate some of its properties. In Section

3, we discuss the idea of a kernel-based belief, a key element of our analysis. We also propose

a topology associated with the set of these beliefs. In Section 4, we prove the existence of

canonical homeomorphism. In Section 5, we compare the standard construction of type

space with our construction of kernel-based type space. Appendix A contains proofs of all

results presented in Section 3.

2 Kernels

Throughout this and the next sections, we assume that X and Y are Polish spaces endowed

with Borel σ-algebras, E and F , respectively. E and F are generic elements of E and F ,

respectively. We endow X×Y with the product σ-algebra, of which B is its generic element,

and B(x) is a section of B at x. P (X) denotes a collection of probability measures on X

with the weak-* topology assigned to it.

ν : X ×F → R is a kernel1 between X and Y , if for each x, ν (x; .) is probability measure

on Y , and for each F ∈ F , ν(.;F ) is a measurable function. If λX is a probability measure

on X, then for a given ν, there is the unique probability, λX×Y on X×Y , such that for each

B

λX×Y (B) =

∫
X

ν(x;B(x))dλX . (1)

Any measure on X×Y that can be represented as in (1) is called a disintegrable measure

with respect to (its marginal) λX . Under our topological assumption, every probability

measure on X × Y is disintegrable (see, for instance, Chapter 21 in Fristedt and Gray

(1997)).

We say that ν and ν̃ are equivalent kernels with respect to λX if for any F , ν(x;F ) =

ν̃(x;F ) λX-a.s. Since equivalent kernels differ only on the set of measure zero, it is easy to

show the following result.

1Kernels are also called transition probabilities, Markov kernels, or transition kernels.
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Lemma 2.1

Let ν and ν̃ be equivalent with respect to λX . For each measurable B ⊂ X × Y ,

λX×Y (B) =

∫
X

ν(x;B(x)dλX =

∫
X

ν̃(x;B(x))dλX = λ̃X×Y (B). (2)

For a product of more than two Polish spaces, ν0,..,n−1;n will denote a kernel between X1×...×
Xn−1 and Xn. Let P (X0× ...×Xn) denote the collection of (fully disintegrable) measures on

X1×...×Xn. If λ0,...,n ∈ P (X0×...×Xn), then there is a probability, λ0, on X0 and a collection

of kernels, (ν0;1, ν0,1;2, ..., ν0,...,n−1;n), such that for any measurable B ⊂ X0 × ... × Xn, we

have:

λ0,...,n(B) =

∫
X0

dλ0

∫
X1

ν0;1(x0; dx1)...

∫
Xn

1Bν
0,...,n−1;n(x0, ..., xn−1; dxn) (3)

where 1B is an indicator function.

Construction of type space, which we demonstrate in Section 4, is based on infinite sequences

of the form, (λ0, ν0;1, ν0,1;2, ..., ν0,...,n−1;n, ...). The Ionescu-Tulcea Theorem (see Chapter II.9

in Shiryaev (1996)), which is the basis of our main results, indicates that such a sequence

generates the unique measure, λ∞, on X0× ...×Xn× .... In addition, λ∞ agrees with λ0,...,n

– constructed in (3) – on cylinders where cylinder Cn is defined as B0,...,n ×Xn+1 × .... The

base of cylinder, B0,...,n, is a measurable subset of X0 × ...×Xn.

Lemma 2.2 contains auxiliary results related to measures on product spaces, which will help

us in the forthcoming sections. We skip the proofs, as they are based on standard methods.

Lemma 2.2

1a. Take λ0,1 on X0 × X1 and λ0. B0 is a λ0-continuity set2 if and only if B0 × X1 is a

λ0,1-continuity set.

1b. Take λ∞ and its marginal λ0,...,n. B0,...,n is a λ0,...,n-continuity set if and only if Cn =

B0,...,n ×Xn+1 × ... is a λ∞-continuity set.

2a. If {λ0,1
t } weak-* converges to λ0,1, then the sequence of marginals generated by {λ0,1

k },
{λ0

k}, weak-* converges to the marginal of λ0,1, λ0.

2Set E is a λ-continuity set if λ(∂E) = 0, where ∂E denotes the boundary of E.
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2b. If {λ∞k } weak-* converges to λ∞, then for each n, the sequence of marginals generated

by {λ∞k }, {λ
0,...,n
k }, weak-* converges to the marginal of λ∞, λ0,...,n.

3. λ∞ is uniquely determined by cylinders.

So far, we have discussed a general construction of kernels. However, our main interest lies

in continuous kernels.

Definition 2.1 Continuous kernel

Kernel, ν, between X and Y is continuous if ν(xk; .) weak-* converges to ν(x; .) whenever

{xk} converges to x.

Continuous kernels are also called Feller kernels and they satisfy a very useful property (see

Theorem 2.5.53 in Denkowski et al. (2003)), which we will use in construction of topology

for the families of kernels.

Lemma 2.3

If a kernel, ν, between X and Y is continuous, then the function

g(x) :=

∫
Y

f(x, y)ν(x; dy) (4)

is bounded continuous for a bounded continuous f on X × Y .

Let PC(X0× ...×Xn) be collection of measures on X0× ...×Xn that are disintegrable with

respect to continuous kernels.

3 Kernel-based Beliefs

A kernel, ν, between X and Y is a natural probabilistic representation of Bernheim’s justi-

fication procedure. Ann starts with a conjecture over X, the set of Bob’s strategies. Such

a conjecture is called a first-order belief. Bob conducts the same reasoning, and Y denotes

the set of his first-order beliefs. In the next step, Ann fixes some strategy of Bob, x, and

searches for Bob’s conjectures that make x optimal. Kernel ν(x, .) represents that search.

However, ν is not unique from the probabilistic perspective. Any kernel equivalent to ν with
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respect to Ann’s first-order belief would represent the same reasoning of Ann. Hence, instead

of defining Ann’s second-order belief as a kernel, we should consider a family of equivalent

kernels.

In fact, we restrict our attention to continuous kernels. There are two arguments supporting

this additional requirement. First, continuity of kernel implies some form of consistency

in Ann’s reasoning. She does not “jump” in her pondering about Bob’s choices – if two

strategies, x and y, are close to each other, then we may expect that Bob’s beliefs supporting

them are not very different. In consequence, ν(x, .), Ann’s conjecture given x, and ν(y, .),

Ann’s conjecture given y, should be close to each other. The second reason to impose

continuity of kernels is more technical and will become clear when we define the convergence

of kernel-based beliefs. Our discussion implies the following definition of kernel-based belief.

Definition 3.1 Kernel-based Belief

Kernel-based belief between X and Y is a family of continuous kernels equivalent to contin-

uous kernel ν with respect to some probability measure on X, λX .

Let K(X;Y ) denote the collection of kernel-based beliefs on X×Y , with its generic element

K. In the above definition, we say that the pair, (λX , ν), generates K and that λX is

associated with K. The following result is a consequence of Lemma 2.1.

Corollary 3.1

Kernel-based belief, K, and its associated measure, λX , generate the unique and continuously

disintegrable measure, λX×Y , on X such that λX×Y and λX agree on X.

Corollary 3.1 suggests a natural definition of coherency.

Definition 3.2 Coherency

1. (λX , K) is coherent if λX is associated with K.

2. (K0,...,n−2;n−1, K0,...,n−1;n) is coherent if K0,...,n−2;n−1 together with its associated proba-

bility measure, λ0,...,n−2, generates λ0,...,n−1 that is associated with K0,...,n−1;n.

Our definition naturally extends to hierarchies. (λ0, K0;1, ..., K0,...,n−1;n, ...) is coherent if

every pair of its adjacent elements is coherent. Such a hierarchy is characterized by a useful

property.

7



Lemma 3.1

For a coherent (λ0, K0;1, ..., K0,...,n−1;n, ...) there exists a unique sequence, (λ0, λ0,1, ...), where

λ0,...,n is a measure on X0 × ...×Xn, and a unique λ∞ on X0 × ...×Xn × ... that, for each

n, agrees with λ0,...,n on cylinders.

The equivalency of kernels forces us to define a kernel-based belief as a family of kernels.

Such a belief together with its associated measure yields unique probability on the product.

However, associated measure is not unique. In the next lemma, we discover the relation-

ship between kernel-based beliefs and absolute continuity of measures.3 This result will be

important in our construction of topology on K(X;Y ).

Lemma 3.2

λX and λ̃X are both associated with K if and only if λX and λ̃X are absolutely continuous

with respect to each other.

Observe that a kernel-based belief, together with its associated measure, is a linear bounded

operator on the space of real-valued, continuous bounded functions on X × Y , CB(X × Y ).

We assign the weak-* topology to K(X;Y ). That is, {Kk} converges to K if and only if

there exists a sequence, {λXk }, and λX such that each λXk is associated with Kk, and λX is

associated with K and

∫
X

dλXk

∫
Y

fνk(x; dy)→
∫
X

dλX
∫
Y

fν(x; dy), for every f ∈ CB(X × Y ). (5)

From the (generalized) Fubini Theorem, we know that
∫
X
dλXk

∫
Y
fνk(x; dy) =

∫
X×Y fdλ

X×Y
k ,

where λX×Yk is the unique measure constructed from (λXk , Kk). Thus, the convergence of

kernel-based beliefs is a weak-* convergence of the measures on X × Y generated by these

beliefs and their associated probabilities.

However, as we discovered in Lemma 3.2, kernel-based belief does not have the unique

associated measure. This observation raises a natural concern about our construction of

convergence in K(X;Y ). What if, in (5), instead of {λXk } and λX , we have {λ̃Xk } and λ̃X

such that λXk and λ̃Xk are absolutely continuous with respect to each other, and λX and λ̃X

3Let λX and λ̃X be two probabilities on X. We say that λX is absolutely continuous with respect to

λ̃X , denoted by λX � λ̃X , if λX(E) = 0 whenever λ̃X(E) = 0.
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are absolutely continuous with respect to each other? It is possible that the convergence

described in (5) does not hold for the replaced measures. Of course, this does not immediately

mean that our definition is not appropriate. Suppose that {λ̃Xk } does not weak-* converge to

λ̃X . In this case, there is no reason to expect the convergence in (5). However, if {λ̃Xk } does

weak-* converge to λ̃X and, nevertheless, convergence in (5) does not hold, then, clearly, we

need to change the definition of convergence of kernel-based beliefs. Fortunately, as we show

in the next lemma, our construction does not fail the consistency check.

Lemma 3.3

Suppose that {Kk} converges to K for {λXk } and λX , as in (5). Then, the following are true:

1. {λXk } weak-* converges to λX .

2. Suppose that {λ̃Xk } weak-* converges to λ̃X . If λ̃Xk is associated with Kk for each k,

and λ̃X is associated with K, then∫
X

dλ̃Xk

∫
Y

fνk(x; dy)→
∫
X

dλ̃X
∫
Y

fν(x; dy), for every f ∈ CB(X × Y ). (6)

Lemma 3.3 supports our choice of topology assigned to K(X;Y ). We can rewrite the con-

vergence condition in a way that appears more natural, as it does not rely on the specific

sequence, {λXk }, that we used in (5).

A sequence of kernel-based beliefs, {Kk}, converges to kernel-based belief, K,

if and only if for any sequence, {λXk }, converging to λX such that each λXk is

associated with Kk, and λX is associated with K, we have∫
X

dλXk

∫
Y

fνk(x; dy)→
∫
X

dλX
∫
Y

fν(x; dy), for every f ∈ CB(X × Y ). (7)

Analysis of the proof of Lemma 3.3 indicates why we restrict our attention to continuous

kernels. With a discontinuous kernel, we cannot expect the function, gk :=
∫
Y
fνk(x; dy), to

be continuous. This, in turn, prevents us from using the Portmanteau Theorem, which was

essential in proving Lemma 3.3.

Lemma 3.3 not only serves as our argument for focusing only on continuous kernels, but also

helps us to establish the equivalency result for the convergence of sequences of the form, {λ0
k,

K0;1
k , ...}. Such a convergence is crucial for the construction of canonical homeomorphism in

the next section.
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Lemma 3.4

Let {(λ0
k, K

0;1
k )} be a sequence of coherent pairs and let (λ0, K0;1) be a coherent pair. Let

{λ0,1
k } be the sequence of unique measures induced by {(λ0

k, K
0;1
k )} and let λ0,1 be the unique

measure induced by (λ0, K0;1). Then, {(λ0
k, K

0;1
k )} converges to (λ0, K0;1) if and only if {λ0,1

k }
weak-* converges to λ0,1.

Our choice of topology for K(X;Y ) turns out to be very useful as it implies that K(X;Y )

is metrizable and separable space, a result that we will use in Lemma 4.1.

Lemma 3.5

If X and Y are Polish, then K(X;Y ) is metric separable.

4 Kernel-based Type Spaces

Let S be a Polish space endowed with Borel σ-algebra. This is an uncertainty space faced by

the players. A kernel-based type is an infinite collection of kernel-based beliefs. In order

to construct it, we inductively define spaces:

Ω0 := S

Ω1 := P (S)

Ω2 := K(S;P (S)) = K(Ω0; Ω1)

...

Ωn := K(Ω0 × ...× Ωn−2; Ωn−1).

Let W0 := ×
i=1

Ωi be the (canonical) space of kernel-based types, with generic element, w :=

(λ0, K0;1, K0,1;2, ...). Each K0,...,n−1;n is a family of equivalent kernels between Ω0× ...×Ωn−1

and Ωn. We defined coherency of a sequence, (λ0, K0;1, K0,1;2, ...), in the previous section.

Let W1 be the set of coherent types. Our construction of canonical homeomorphism uses the

approach based on Proposition 2 in Brandenburger and Dekel (1993). The first step consists

of showing that coherent types are homeomorphically mapped to the subset of beliefs on

S × W0. Recall that kernel-based beliefs are constructed from continuous kernels. This

implies that that we should not consider P (S ×W0), but rather PC(S ×W0).

Lemma 4.1
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If S is Polish, then there exists a homeomorphism, p : W1 → PC(S ×W0).

Proof of Lemma 4.1.

1. Existence, injectivity, and surjectivity of p. Take w ∈ W1. From Lemma 3.1, we

know that w yields a unique probability, λ∞, on S ×W0, which we denote as p(w).

Note that existence of p does not require S to be even a topological space. This is

distinct from the previously mentioned literature based on the Kolmogorov Extension

Theorem, where topological assumptions are necessary for the existence of such a map.

To show injectivity, take distinct w and w̃. They generate not only unique λ∞ = p(w)

and λ̃∞ = p(w̃), respectively, but also unique sequences of measures (λ0, λ0,1, ...) and

(λ̃0, λ̃0,1, ...), respectively. The difference between w and w̃ occurs at some level of

hierarchy. It means that either λ0 6= λ̃0 or K0,...,n−1;n 6= K̃0,...,n−1;n for some n. If the

former is true, then p(w) 6= p(w̃), as they do not agree on Ω0. If the latter is true, then

λ0,...,n and λ̃0,...,n differ. Since w and p(w) agree on cylinders, p(w) 6= p(w̃). Surjectivity

is a consequence of taking PC(S ×W0), instead of P (S ×W0), as a range of p.

2. Continuity of p. Take a sequence, {wk}, converging to w. That is, (λ0
k, K

0;1
k , K0,1;2

k ,

...)→ (λ0
k, K

0;1
k , K0,1;2

k , ...). Let λ0,...,n
k and λ0,...,n be probability measures on Ω0×...×Ωn

generated by the first n levels of {wk} and w, respectively. Let λ∞k = p(wk) and

λ∞ = p(w). Assuming that {wk} → w implies, due to Lemma 3.4, that λ0,...,n
k → λ0,...,n

for each n. To show that {p(wk)} weak-* converges to p(w), we use the convergence-

determining-class technique (see Chapters 1.2 and 1.3, especially Problem 7 on p. 22,

in Billingsley (1968)): For a countable product of separable metric spaces, if λ∞k (Cn)→
λ∞(Cn) for each λ∞-continuity cylinder set Cn, then {λ∞k } weak-* converges to λ∞.

In our case, separability is satisfied (see Lemma 3.5). Fix λ∞-continuity cylinder,

Cn = B0,...,n × Ωn+1 × ..., where B0,...,n is a measurable subset of Ω0 × ... × Ωn. Note

that λ∞(Cn) = λ0,...,n(B0,...,n). Similarly, λ∞k (Cn) = λ0,...,n
k (B0,...,n). Note that Cn is a

λ∞-continuity set if and only if B0,...,n is a λ0,...,n-continuity set (Lemma 2.2.1b). Since

{λk} weak-* converges to λk, by the Portmanteau Theorem, limk→∞ λ
0,...,n
k (B0,...,n) =

λ0,...,n(B0,...,n). Thus, limk→∞ λ
∞
k (Cn) = λ∞(Cn), which implies that {p(wk)} weak-*

converges to p(w).

3. Continuity of p−1. Take {λ∞k } weak-* convergent to λ∞. p−1(λ∞k ) is a hierarchy (λ0
k,

K0;1
k , K0,1;2

k , ...) that yields a unique hierarchy of marginals, (λ0
k, λ

0,1
k , λ0,1,2

k , ...). From

p−1(λ∞) we obtain unique (λ0, K0;1, K0,1;2, ...) and (λ0, λ0,1, λ0,1,2, ...). We want to

show that weak-* convergence of {λ∞k } to λ∞ implies the convergence of marginals.
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From Lemma 3.4, we know that convergence of marginals is enough to establish the

convergence of hierarchies, (λ0
k, K

0;1
k , K0,1;2

k , ...) → (λ0, K0;1, K0,1;2, ...). Let λ0,...,n
k and

λ0,...,n be these marginals on Ω0× ...×Ωn. Take B0,...,n, a measurable subset of Ω0× ...×
Ωn, such that it is a λ0,...,n-continuity set. Hence, as we argued above, Cn = B0,...,n ×
Ωn+1 × ... is a λ∞-continuity set. By the Portmanteau Theorem, weak-* convergence

λ∞k → λ∞ is equivalent with the convergence on λ∞-continuity set: limk→∞ λ
∞
k (Cn) =

λ∞(Cn). But λ∞(Cn) = λ0,...,n(B0,...,n) and for each k, λ∞k (Cn) = λ0,...,n
k (B0,...,n). Hence,

limk→∞ λ
0,...,n
k (B0,...,n) = λ0,...,n(B0,...,n). Invoking again the Portmanteau Theorem, we

establish that {λ0,...,n
k } weak-* converges to λ0,...,n. Since marginals converge at each

level n, it means that (λ0
k, K

0;1
k , ..., K0,1,...,n−1;n

k )→ (λ0, K0;1, ..., K0,1,...,n−1;n) for each n.

In consequence, {p−1(λ∞k )} weak-* converges to p−1(λ∞). �

Let W2 := {w ∈ W1 : p(w)(S ×W1) = 1} be the set of types that are not only coherent but

also believe in coherency (i.e., these types assign measure one to the fact that coherency is

satisfied). Inductively, we define Wn := {w ∈ Wn−1 : p(w)(S ×Wn−1) = 1} and W := ∩Wn

as the set of types that satisfy both coherency and the common belief of coherency. The

relationship among sets Wn is captured in the following lemma.

Lemma 4.2

For each n = 1, ..., Wn is a closed subset of Wn−1.

Proof of Lemma 4.2. First, we prove that W1 is closed in W0. Take a sequence of coherent

types, {wk}, converging to w. Each wk generates hierarchy (λ0
k, λ

0,1
k ...). That is, from Lemma

3.4, we have convergence (λ0
k, λ

0,1
k ...)→ (λ0, λ0,1...). Note that if {λ0,...,n

k } converges to λ0,...,n,

then the sequence of marginals generated by {λ0,...,n
k } converges to the marginal of λ0,...,n.

Hence, w is coherent, and it follows that W1 is closed, which indicates that it is a measurable

subset of W0. This means that W2 is well-defined; that is, requiring p(w)(S ×W1) = 1 is a

valid operation. Note that continuity of p implies that W2 is closed in W0. Consequently, by

induction, each Wn is a closed subset of W0. We prove that {Wn} is a decreasing sequence

by induction. We already established that W0 ⊃ W1. Suppose that W0 ⊃ W1 ⊃ ... ⊃ Wn is

true. To verify for n + 1, take w ∈ Wn+1. That is, p(w)(S ×Wn) = 1. Since Wn ⊃ Wn−1,

it implies that p(w)(S ×Wn−1) = 1, which makes w belong to Wn. Hence, Wn ⊃ Wn+1, as

required. �

In the next proposition, we demonstrate the existence of canonical homeomorphism.

12



Proposition 1

If S is Polish, then there exists a homeomorphism, q : W → PC(S ×W ).

Proof of Proposition 1. First, we must show thatW = {w ∈ W1 : p(w)(S×W ) = 1}. Take

w ∈ W . In Lemma 4.2 we showed that {Wn} is a decreasing sequence. Using that result and

the continuity of probability measure, we deduce that p(w)(S ×W ) = p(w)(
⋂
n(S ×Wn)) =

limn→∞ p(w)(S × Wn) = 1. Hence, W ⊂ {w ∈ W1 : p(w)(S × W ) = 1}. Next, take

w ∈ {w ∈ W1 : p(w)(S ×W ) = 1}. Suppose there is m such that p(w)(S ×Wm) < 1. Since

{Wn} is a decreasing sequence, this implies that p(w)(S ×Wk) < 1 for all k ≥ m. Using

again the continuity of probability measure, we deduce that p(w)(S ×W ) < 1, which is a

contradiction. Hence, p(w)(S ×Wn) = 1 for all n, and {w ∈ W1 : p(w)(S ×W ) = 1} ⊂ W .

From the fact that W = {w ∈ W1 : p(w)(S × W ) = 1}, we derive that p(W ) = {λ∞ ∈
P̃C(S×W0) : λ∞(S×W ) = 1}. Since {λ∞ ∈ P̃C(S×W0) : λ∞(S×W ) = 1} and P̃C(S×W )

are homeomorphic, and p(W ) and W are also homeomorphic, we deduce the desired relation.

�

5 Kernel-based and Standard Type Spaces

We inductively define the standard type:

X0 := S

X1 := X0 × P (X0)

...

Xn := Xn−1 × P (Xn−1).

We assume that S is Polish, which implies, due to Theorems 3.1 and 3.5 in Varadarajan

(1958), that each Xn is Polish.

T0 := ×
i=0
P (Xi) is the space of standard types with a generic element, t = (µ0, µ0,1, ...).

Each µ0,...,n is defined on a product of Polish spaces and, as such, is disintegrable, as in

(3). However, such a type does not to have to be coherent, as in Brandenburger and Dekel

(1993). Hence, we say that a type is coherent if disintegration of the n-level conjecture is

conducted with respect to the n− 1-level belief. If, in addition, the disintegration procedure

yields continuous kernel, then we say that a type is coherent and continuous. Let T1 be

the set of standard types that satisfy coherency and continuity. As in the previous section,
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we inductively define Tn := {t ∈ T1 : f(t)(S × Tn−1) = 1}. Let T := ∩Tn be the set of types

that satisfy both (a) coherency and continuity, and (b) the common belief of coherency

and continuity. We obtain the existence of homeomorphisms, f : T1 → PC(S × T0) and

g : T → PC(S × T ). The proofs are omitted since, under assumptions of coherency and

continuity, they are virtually identical to the proofs of Lemma 4.1 and Proposition 1.

Lemma 5.1

If S is Polish, then there exists a homeomorphism, f : T1 → PC(S × T0).

Proposition 2

If S is Polish, then there exists a homeomorphism, g : T → PC(S × T ).

The following commutative diagram describes the relationship between the kernel-based and

standard types.

W
Ψ−−−→ T

q

y yg
PC(S ×W ) −−−→

φ
PC(S × T )

(8)

In Propositions 1 and 2, we established the existence of homeomorphisms, q and g. In Propo-

sition 3, which concludes our paper, we establish that W and T are homeomorphic. Function

φ is defined as φ := q−1 ◦Ψ ◦ g which, given that it is a combination of homeomorphisms, is

a homeomorphism.

Proposition 3

There exists a homeomorphism, Ψ : W → T .

Proof of Proposition 3. First, we build a homeomorphic function, Ψ : W1 → T1. Take

w ∈ w1. Let ψ0 be a projection of w on P (S). In other words, ψ0(w) is the first-level

belief. Let ψ0,1(w) be the unique probability on S × P (S) = P (X1) induced by the first

two levels of w. We know that ψ0,1(w) ∈ P̃C(S × P (S)) is unique, since w is coherent. In

general, ψ0,...,n assigns to w unique probability on Xn. Since ψ0 is the identity function, it

is homeomorphic. According to Lemma 3.4, each ψ0,...,n is homeomorphic as well. Next,
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define Ψ := (ψ0(w), ψ0,1(w), ..., ψ0,...,n(w), ...). Each component of Ψ is homeomorphic, which

implies that Ψ is homeomorphic as well. Next, we want to show that Ψ(Wn) = Tn for each

n. We already established that this claim is true for n = 1 and we assume that this claim

is also true for n. In order to verify the claim for n+ 1, take w ∈ Wn+1. By assumption, w

assigns measure one to S ×Wn. Since Ψ is homeomorphic, a measure associated with Ψ(w)

on S×T1 assigns one to S×Ψ(Wn). But this means that S×Tn is assigned probability one

by Ψ(w). Hence, Ψ(w) ∈ Tn+1. In order to prove that t, which belongs to Tn+1, belongs to

Ψ(Wn+1), we again follow reasoning based on the fact that Wn and Tn are homeomorphic.

Finally, given that Ψ(Wn) = Tn for each n and that Ψ is a homeomorphism, we note that

T = ∩Tn = ∩Ψ(Wn) = Ψ(∩Wn) = Ψ(W ). Thus, Ψ carries W homeomorphically to T . �

6 Appendix

Proof of Lemma 3.1. Take coherent (λ0, K0;1, ..., K0,...,n−1;n, ...). First, consider (λ0, K0;1).

By assumption λ0 is associated with K0;1. Hence, by Corollary 3.1, we know that (λ0, K0;1)

generates a unique λ0,1. By assumption, λ0,1 is associated with K0,1;2, and together they

generate a unique λ0,1,3. The reasoning continues ad infinitum. To show the uniqueness

of λ∞, take (λ0, ν0;1, ν0,1;2, ..., ν0,...,n−1;n, ...) where ν0,...,n−1;n is some kernel that belongs to

K0,...,n−1;n. By the already mentioned Ionescu-Tulcea Theorem, such a sequence generates a

unique λ∞ on X0 × ...×Xn × .... Next, take different (λ0, ν̃0;1, ν̃0,1;2, ..., ν̃0,...,n−1;n, ...) where

ν̃0,...,n−1;n belongs to K0,...,n−1;n. Let λ̃∞ denote the unique measure on X0 × ... × Xn × ...
generated by this sequence. Let λ0,...,n be the unique measure generated by (λ0, ν0;1, ...,

ν0,...,n−1;n). By what we just discussed, (λ0, ν̃0;1, ..., ν̃0,...,n−1;n) generates the same λ0,...,n.

Since the measure on X0× ...×Xn× ... is uniquely determined by cylinders (Lemma 2.2.3),

we deduce that λ∞ = λ̃∞. �

Proof of Lemma 3.2. First, suppose that λX and λ̃X are both associated with K. Assume

also that there is E such that λX(E) = 0 while λ̃X(E) > 0. Take ν ∈ K. Let ν̃ be a kernel

that is identical with ν except for subset E. Hence, ν̃ and ν are equivalent with respect to

λX while they are not equivalent with respect to λ̃X . This is a contradiction. Next, suppose

that λX and λ̃X are absolutely continuous with respect to each other. Take ν and ν̃, which

are equivalent with respect to λX . That is, these kernels are identical except for set E such

that λX(E). Since λ̃X(E) = 0 as well, we conclude that ν and ν̃ are equivalent with respect

to λ̃X as well. �

Proof of Lemma 3.3. The first claim is a direct consequence of combining Lemma
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2.2.1a with the fact that a kernel and its associated measure generate the unique mea-

sure on the product. In order to prove the second claim, take
∫
X
dλ̃Xk

∫
Y
fνk(x; dy). Denote

gk :=
∫
Y
fνk(x; dy). According to Lemma 2.3, gk is bounded continuous. Similarly, g :=∫

Y
fν(x; dy), which also belongs to CB(X). We rewrite

∫
X
dλ̃Xk

∫
Y
fνk(x; dy) =

∫
X
gkdλ̃

X
k

and
∫
X
dλ̃X

∫
Y
fν(x; dy) =

∫
X
gdλ̃X and obtain:∫

X

gkdλ̃
X
k −

∫
X

gdλ̃X =

(∫
X

gkdλ̃
X
k −

∫
X

gkdλ̃
X

)
+

(∫
X

gkdλ̃
X −

∫
X

gdλ̃X
)

=

(∫
X

gkdλ̃
X
k −

∫
X

gkdλ̃
X

)
+

∫
X

(gk − g) dλ̃X .

Since {λXk } weak-* converges to λX , we know that, due to the Portmanteau Theorem,∫
X
hdλ̃Xk →

∫
X
hdλ̃X for all h ∈ CB(X). Since each gk and g are in CB(X), we deduce

that
∫
X
gkdλ̃

X
k −

∫
X
gkdλ̃

X converges to zero. Second, we want to show that
∫
X

(gk − g) dλ̃X

converges to zero as well. By assumption,
∫
X
gkdλ

X
k →

∫
X
gdλX . We manipulate the terms

as follows:∫
X

gkdλ
X
k −

∫
X

gdλX =

(∫
X

gkdλ
X
k −

∫
X

gkdλ
X

)
+

(∫
X

gkdλ
X −

∫
X

gdλX
)

=

(∫
X

gkdλ
X
k −

∫
X

gkdλ
X

)
+

∫
X

(gk − g) dλX .

As we argued above, {λXk } weak-* converges to λX . This implies that
∫
X
gkdλ

X
k −

∫
X
gkdλ

X

converges to zero. Since
∫
X
gkdλ

X
k →

∫
X
gdλX , it must be true that

∫
X

(gk − g) dλX con-

verges to zero as well. Hence, for large enough k, it is true that
∫
X

(gk − g) dλX ≤
∫
X

1
k
dλX =

1
k
. Now, we go back to

∫
X

(gk − g) dλ̃X . Due to the Radon-Nikodyn Theorem, for each

k, there exists a function, ρk, such that (a) λ̃Xk (E) =
∫
E
ρkdλ

X
k for each measurable E,

and (b)
∫
X
γdλ̃Xk =

∫
X
γρkdλ

X
k for each measurable γ. In consequence, we know that∫

X
(gk − g) dλ̃X =

∫
X

(gk − g) ρkdλ
X . But this implies that for large k,

∫
X

(gk − g) ρkdλ
X ≤∫

X
1
k
ρkdλ

X = 1
k

∫
X
ρkdλ

X = 1
k

as
∫
X
ρkdλ

X = λ̃X(X) = 1. That is,
∫
X

(gk − g) ρkdλ
X

converges to zero. �

Proof of Lemma 3.4. First, suppose that {λ0
k, K

0;1
k } converges to {λ0, K0;1}. This means

that {λ0
k} weak-* converges to λ0, and {K0;1

k } converges to K0;1. By Lemma 3.3, the latter

means that∫
X

dλXk

∫
Y

fνk(x; dy)→
∫
X

dλX
∫
Y

fν(x; dy), for every f ∈ CB(X × Y ).

In other words, {λ0,1
k } weak-* converges to λ0,1. Next, suppose that {λ0,1

k } weak-* converges
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to λ0,1. This indicates that {λ0
k} weak-* converges to λ0 (see Lemma 2.2.2a). Take sequence

{K0;1
k } and belief K0;1. According to the definition of convergence of kernel-based belief

(equation (5)), convergence of {λ0,1
k } implies that {K0;1

k } converges to K0;1. �

Proof of Lemma 3.5. First, we note that P (X × Y ) is metric separable (see Theorem 3.1

in Varadarajan (1958)). Hence, PC(X × Y ), a subset of P (X × Y ), is also metric separable.

We need to find a continuous and surjective map between a subset of PC(X × Y ) and

K(X;Y ). We are interested in the subset of PC(X × Y ), since each K, together with its

associated measure, generates continuously disintegrable probability. We build this subset in

the following way. To each K we assign one of its associated measures, λX . Together, a pair,

(K,λX), generates the unique measure, λX×Y . Collection of all such measures constitutes

subset P̂C(X ×Y ) of PC(X ×Y ). Let θ : P̂C(X ×Y )→ K(X;Y ) be a natural function that

assigns to each λX×Y ∈ P̂ (X×Y ) a kernel K that generated it. Such a function is surjective.

To prove continuity of θ, suppose that λX×Yk → λX×Y . Hence, for every f ∈ CB(X ×
Y ),

∫
X×Y fdλ

X×Y
k →

∫
X×Y fdλ

X×Y . Since all measures in P̂C(X × Y ) are continuously

disintegrable, we can rewrite the convergence as
∫
X
dλXk

∫
Y
fνk(x; dy)→

∫
X
dλX

∫
Y
fν(x; dy),

where νk belongs to the kernel-based belief that formed λX×Yk , θ(λX×Yk ). The same holds

for ν, which is a member of θ(λX×Y ). Hence, by definition of convergence of kernel-based

beliefs, we deduce that θ(λX×Yk )→ θ(λX×Y ). �
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