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Abstract

The standard model of knowledge, (Ω, P ), consists of state space, Ω, and possibility

correspondence, P . Usually, it is assumed that P satisfies all knowledge axioms (Truth

Axiom, Positive Introspection Axiom, and Negative Introspection Axiom). Violating

at least one of these axioms is defined as epistemic bounded rationality (EBR). If this

happens, a researcher may try to look for another model, (Ω∗, P ∗), that generates the

initial model, (Ω, P ), while satisfying all knowledge axioms. Rationalizing EBR means

that the researcher finds such a model. I determine when rationalization of EBR

is possible. I also investigate when a model, (Ω∗, P ∗), which satisfies all knowledge

axioms, generates a model, (Ω, P ), which satisfies these axioms as well.
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1 Introduction

As stated in Aumann (1976), the classical model of knowledge consists of state space, Ω,

and possibility correspondence, P . Each state, ω, is a description of some possible world.

Possibility correspondence is a function that assigns a subset of Ω to each ω. P (ω) is

interpreted as a collection of all states that the agent perceives to be possible if ω is a

true state. Dekel and Gul (1997), Fagin et al. (1995), Geanakoplos (1989), and Rubinstein

(1998) discuss the model in great detail, including its interpretations and proofs of classical

results. Knowledge axioms describe the properties of P as follows: Truth Axiom (ω ∈ P (ω)),

Positive Introspection Axiom (if ω̃ ∈ P (ω), then P (ω̃) ⊂ P (ω)), and Negative Introspection

Axiom (if ω̃ ∈ P (ω), then P (ω) ⊂ P (ω̃)). Satisfying all knowledge axioms means that the

agent is epistemically rational and her possibility correspondence is partitional. Epistemic

bounded rationality (EBR) occurs when the agent violates at least one of knowledge axioms

(see Geanakoplos (1989) and Rubinstein (1998)).

In this paper, I consider the researcher who builds a model, (Ω, P ), that depicts the agent’s

knowledge. The model hypothesized by the researcher may incorrectly represent the agent’s

knowledge. In such a case, the researcher may falsely conclude the agent is not epistemically

rational. If the researcher detects EBR, then he may suspect that the conclusion derives

from his incorrect model of the agent’s knowledge. The researcher could investigate whether

or not another model, (Ω∗, P ∗) exists, which satisfies all knowledge axioms. If such a model

does exist, then the researcher rationalizes EBR. In this paper, I consider a specific structure

of (Ω∗, P ∗). In particular, I impose that Ω∗ is defined as Ω×X and P in (Ω, P ) is a projection

of P ∗ to Ω. Because of its construction, I call (Ω∗, P ∗) an extended model of knowledge.

In the literature on unawareness, the agent is unaware of some events, but the researcher is

assumed to be omnipotent. In this paper, I allow for the researcher who considers only Ω

and is unaware of X. The researcher’s assumed model, (Ω, P ), is derived from (Ω∗, P ∗). In

Section 2, I discuss the relationship between (Ω∗, P ∗) and (Ω, P ) and show how the latter

is obtained from the former. I also provide an interpretation of X, which expands Ω to

Ω∗. In Section 3, I determine when it is possible to rationalize EBR. I do this by fixing a

model, (Ω, P ), that depicts EBR and investigating when that model can be extended to a

model, (Ω∗, P ∗), that satisfies all knowledge axioms. In Section 4, I address a complementary

problem. I fix a model, (Ω∗, P ∗), that satisfies all knowledge axioms and determine when

that model generates a model, (Ω, P ), that also satisfies all knowledge axioms.
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2 Extended model of knowledge

Consider an extended model of knowledge, (Ω∗, P ∗), where Ω∗ = Ω × X. If the researcher

hypothesizes that Ω is a state space, then I assume that P is built as a projection of P ∗

on Ω. This construction is stipulated by the projection-based approach developed in the

literature on unawareness (see Board et al. (2011), Galanis (2011), Galanis (2013), Halpern

(2001), Halpern and Rêgo (2008), Heifetz et al. (2006), Heifetz et al. (2008), Karni and Vierø

(2013), Li (2009), Modica and Rustichini (1999), and Schipper (2013)). First, take a state

(ω, x) from Ω∗ and let proj
Ω
P ∗(ω, x) denote the projection of P ∗ on Ω. That is, proj

Ω
P ∗(ω, x)

is a collection of all states in Ω, ω̃, such that (ω̃, x) is considered to be a possible state when

(ω, x) is a true state.

proj
Ω
P ∗(ω, x) := {ω̃ ∈ Ω : (ω̃, x) ∈ P (ω, x)} (1)

Second, take all states in Ω∗ such that the first coordinate of these states is ω. For each

such state, the projection of P ∗ is then computed. The union of these projections defines

the value of P at ω.

P (ω) :=
⋃
x∈X

proj
Ω
P ∗(ω, x) (2)

Definition 2.1

Fix (Ω∗, P ∗) with Ω∗ = Ω×X. P is a projection of P ∗ on Ω if P is defined as it is in (2).

This P is a possibility correspondence generated by P ∗.

The construction of P in Definition 2.1 captures how the researcher, who is unaware of

the fact that the agent’s state space is Ω∗ = Ω × X rather than Ω, determines the agent’s

possibility correspondence, P over Ω.

The researcher’s process of constructing P requires that for each ω in Ω, the researcher

obtain an answer to the question: What states in Ω does the agent consider to be possible

if ω is a true state? However, in terms of the state space Ω∗, the researcher’s question is not

precise enough. This is because for each x in X, there is a state (ω, x). Consequently, ω is

not a state. Rather, ω is an event denoted by Eω = {(ω, x) : x ∈ X}. For every state (ω, x),

the projection of P ∗(ω, x) onto Ω is what the agent considers to be possible (in terms of

Ω) if (ω, x) is a true state. Consequently, there exists a collection of subsets of Ω generated

by taking the projection of P ∗(ω, x) for each x. Each proj
Ω
P ∗(ω, x) can be interpreted as
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a conditional answer to the researcher’s question. Here, conditional refers to the fact that

proj
Ω
P ∗(ω, x) depends on x. However, in this paper, I assume that the researcher obtains

an unconditional answer to his question. As explained below, this is because he controls

what happens in Ω without specifying what state in X is true (which he can not do because

he is unaware of X). The unconditional answer is a combination of all possible conditional

answers in the form of a union.

The following example explains the construction of P . Suppose that Ω = {a, b, c} and

X = {A,B,C}. The agent’s possibility correspondence satisfies all knowledge axioms and

is depicted in Figure 1.

a b c 

A 

B 

C 

Figure 1

I assume that the researcher’s data set is rich enough. That is, for each state ω in Ω, the

researcher can determine P (ω). How is this possible? First, I assume that the agent behaves

in accordance with the Subjective Expected Utility theory (Savage (1972)). Second, I assume

that the researcher is able to determine what state obtains in a way that prevents the agent

from learning what the true state is. Once the researcher fixes a state ω, then he tests

which states the agent believes to be Savage-null. The states which are not Savage-null are

those that the agent considers to be possible, and these states constitute P (ω). This way

of constructing P requires that state space Ω be finite since no researcher could conduct an

infinite number of experiments. In addition, this approach makes more sense in a laboratory

setting in which the researcher either has direct power over which state obtains, or conducts

an experiment that simulates an occurrence of a specific state. Outside of the laboratory,

the researcher generally has no control over what state obtains. However, if the researcher

does not choose which state obtains, then it is not clear how he is to construct the agent’s

possibility correspondence. For example, if the state space is {α, β}, where α stands for

“party α wins elections” and β for “party β wins elections,” then only one of these two

states will obtain but the researcher cannot choose which one. Moreover, if α obtains, then
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it is not clear how the researcher is to construct P (β).

In the example with Ω = {a, b, c}, the researcher begins with a state a. In order to construct

P (a), he then determines which states in Ω are Savage-null. However, from the perspective of

the agent’s state space Ω∗, a is not a state but rather an event {(a,A), (a,B), (a, C)}. I will

now analyze each state in that event. First, consider the state (a,A). From the perspective

of state space Ω∗, the agent considers both (a,A) and (a,B) to be possible states. However,

the relevant perspective is that of state space Ω. From that perspective, the only state that

is not Savage-null is a. Note that {a} is the projection of P ∗(a,A) on Ω. Second, consider

the state (a,B). From the perspective of state space Ω, the agent again believes that only

state a is possible. Note that {a} is the projection of P ∗(a,B) on Ω. Finally, consider the

state (a, C). Now, in terms of the state space Ω∗, the agent believes that both (a, C) and

(b, C) are possible. Consequently, in terms of the state space Ω, only c is Savage-null which

means that the agent believes only a and b to be possible. Note that {a, b} is the projection

of P ∗(a, C) on Ω.

To conclude, if the researcher fixes a, then (in terms of subsets of Ω) the agent believes that

one of the following is possible: {a}, or {a}, or {a, b}. Formally, this means that P (a) = {a}∪
{a} ∪ {a, b}, which is the union of projections: proj

Ω
P ∗(a,A) ∪ proj

Ω
P ∗(a,B) ∪ proj

Ω
P ∗(a, C).

This reasoning leads to the construction of P as presented in Definition 2.1.

In the example under consideration, the researcher constructs the agent’s possibility corre-

spondence as follows: P (a) = {a, b}, P (b) = {a, b, c}, and P (c) = {b, c}. The researcher

detects EBR, however, this conclusion is due to the researcher’s misrepresentation of the

agent’s knowledge.

3 Rationalizable epistemic bounded rationality

Fix a product, Ω × X, with a possibility correspondence P ∗ that satisfies all knowledge

axioms. In this section, I focus on characterizing the possibility correspondences on Ω

which represent EBR and can be obtained from such P ∗. Lemma 3.1 identifies the minimal

conditions that a possibility correspondence, P , must satisfy in order to be rationalizable. It

turns out that the key property is symmetry. Symmetry means that if the agent considers

ω1 to be possible at ω2 (i.e., ω1 ∈ P (ω2)), then at ω1 she believes that ω2 is possible (i.e.,

ω2 ∈ P (ω1)). The symmetry of P is closely related to the B(rouwerian) Axiom, known from

the modal logic literature (see Chellas (1995), Hughes and Cresswell (1984), and Hughes

and Cresswell (1996)). If the agent’s possibility correspondence is symmetric, then the agent
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knows that she considers an event E to be possible whenever E obtains (that is, whenever

a true state is a member of E). If the event does not obtain, then the agent knows that she

does not know E. I also show that violation of the Truth Axiom is not rationalizable.

Lemma 3.1

Fix (Ω∗, P ∗) with Ω∗ = Ω×X. Let P be a possibility correspondence on Ω that is generated

by P ∗.

1. If P ∗ satisfies all knowledge axioms, then P is symmetric.

2. If P ∗ satisfies the Truth Axiom, then P satisfies the Truth Axiom.

Proof of Lemma 3.1: 1. Suppose that ω1 ∈ P (ω2). By definition of P , there must be

x1 and x2 such that (ω1, x1) ∈ P ∗(ω2, x2). Hence, P ∗(ω1, x1) = P ∗(ω2, x2). Consequently,

(ω2, x2) ∈ P ∗(ω1, x1), and again, by definition of P , ω2 ∈ P (ω1). 2. Take ω ∈ Ω. By

assumption, (ω, x) ∈ P ∗(ω, x) for each x ∈ X. Hence, by construction of P , ω ∈ P (ω). �

If a symmetric P satisfies the Positive Introspection Axiom, then it must be true that it

does not violate the Negative Introspection Axiom. To confirm that this is true, assume

that such a P violates the Negative Introspection Axiom. Hence, there are states ω1 and ω2

such that ω1 ∈ P (ω2) and P (ω2) is not a subset of P (ω1). By symmetry, ω2 ∈ P (ω1), but

by the Positive Introspection Axiom, P (ω2) ⊂ P (ω1). This is a contradiction. Similarly, a

model that satisfies the Negative Introspection Axiom, but violates the Positive Introspection

Axiom also cannot be rationalized. As Lemma 3.1 indicates, each model that can possibly

be rationalized must satisfy the Truth Axiom. However, it is well known that the Truth

Axiom and the Negative Introspection Axiom imply the Positive Introspection Axiom.

Proposition 1

Suppose that P on Ω is symmetric and satisfies the Truth Axiom. Fix X such that X and Ω

have the same cardinality. Then, there exists P ∗, defined on Ω × X, such that P ∗ satisfies

all knowledge axioms and generates P .

Proof of Proposition 1: Since X and Ω have the same cardinality, there exists a bijection

f : Ω→ X. For each ω, I define cylinder Cω = {ω} ×X. I partition Cω in such a way that,

for each ω̂ ∈ P (ω), there exists a nonempty subset of Cω. I denote this subset by Bω(ω̂).

Since P (ω) is a subset of Ω and X has the same cardinality as Ω, the proposed construction

is possible. I also require that a state not in P (ω) not be assigned a subset of Cω. That is,
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⋃
ω̂∈P (ω)

Bω(ω̂) = Cω. In other words, Bω(ω̂) is nonempty if and only if ω̂ ∈ P (ω). I construct

P ∗ on Ω×X using the sets Bω(ω̂)s in the following way. First, each individual Bω(ω) is part

of the partition P ∗ on its own. That is, P ∗(ω1, x) = Bω(ω) for all (ω1, x) ∈ Bω(ω). This

leaves the sets Bω(ω̂)s for ω̂ 6= ω. Take this nonempty Bω(ω̂). Due to symmetry, there exists

a nonempty Bω̂(ω). I create the union of these two, which then becomes part of the partition

P ∗. That is, P ∗(ω1, x) = Bω(ω̂) ∪ Bω̂(ω) for all (ω1, x) ∈ Bω(ω̂) ∪ Bω̂(ω). In order to verify

that the proposed construction yields the desired result, first note that P ∗ satisfies all of the

knowledge axioms. Second, I show that the possibility correspondence over Ω, P̄ , which is

generated by P ∗, equals P . Fix ω and let ω̂ ∈ P̄ (ω). By definition, ω̂ ∈ P̄ (ω) if and only

if there are ω̃ and ˜̃ω such that (ω̂, f(ω̃)) ∈ P ∗(ω, f(˜̃ω)). By construction, P ∗ is the union of

B subsets. These different first coordinates preclude (ω̂, f(ω̃)) from being a member of any

Bω(.). Thus, it must be true that (ω̂, f(ω̃)) ∈ Bω̂(ω̄) for some ω̄. Hence, by construction,

P ∗(ω, f(˜̃ω)) = Bω̂(ω̄)∪Bω̄(ω̂). However, note that ω̄ = ω because (ω, f(˜̃ω)) ∈ Bω̂(ω̄)∪Bω̄(ω̂),

which would not be possible otherwise because of the differences in the first coordinates.

Thus, it is possible to conclude that Bω(ω̂) is nonempty. However, as argued above, this is

true if and only if ω̂ ∈ P (ω). �

The proposed structure of the extended state space Ω∗ consists of the state space Ω assumed

by the researcher and an extension X. That is, Ω∗ = Ω × X. It is possible to interpret

Ω∗ = Ω×X in two ways.

The dynamic interpretation indicates that X captures additional periods of which the re-

searcher is unaware. Proposition 1 requires that X has the same cardinality as Ω. Conse-

quently, if the researcher starts with a model (Ω, P ) that describes EBR, and it is possible

to rationalize EBR, then it is enough to consider Ω∗ = Ω×Ω. In other words, extending the

state space to include more periods provides no additional gain.

The second interpretation of Ω∗ = Ω × X is called the descriptive interpretation. Set X

may consist of the missing description of the agent’s state space. In that case, the assumed

Ω is incomplete because the researcher did not take into account all of the aspects the

agent is considering. This interpretation is particularly useful if the state space is built in

a canonical way (see chapter 3 in Gilboa (2009)). Consider the following example. From

the agent’s perspective, there are two relevant elements involved in describing the world, s

and h. Symbol ¬ indicates negation. Hence, {(s, h), (s,¬h), (¬s, h), (¬s,¬h)} is an example

of a state space. However, if the researcher assumes that only s is a relevant aspect, then

he would build only two states of the world, Ω = {(s), (¬s)}. In this case, replacing the

researcher’s construction by the product Ω × X, where X = {(h), (¬h)}, would recreate
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the agent’s view. Recall, however, that the cardinality of X must be at least equal to the

cardinality of Ω.

4 Generating epistemic rationality

In this section, I identify the conditions under which P ∗ over Ω×X always generates epistemic

rationality on Ω. As Lemma 3.1 shows, P generated by such a P ∗ satisfies the Truth

Axiom, and the only form of possible EBR is a simultaneous violation of the Positive and

Negative Introspection Axioms. Hence, it is necessary to determine when P will satisfy both

introspection axioms.

The first obvious candidate is a product of P and PX , where P and PX are defined over Ω

and X, respectively.

Lemma 4.1

Assume that P ∗ over Ω × X is defined as a product, P ∗(ω, x) = P (ω) × PX(x). Then, P ∗

satisfies all knowledge axioms if and only if both P and PX satisfy all knowledge axioms.

Proof of Lemma 4.1: First, assume that P ∗ satisfies all knowledge axioms. I show that P

satisfies all knowledge axioms. The proof for PX is identical. By Lemma 3.1, P satisfies

the Truth Axiom. Take ω1 and ω2 such that ω2 ∈ P (ω1). Hence, (ω2, x2) ∈ P ∗(ω, x1)

for some x1 and x2, and P ∗(ω2, x2) = P ∗(ω1, x1). Since P ∗ is a product, P ∗(ω2, x2) =

P (ω2) × PX(x2) = P (ω1) × PX(x1) = P ∗(ω1, x1). This implies that P (ω2) = P (ω1). Next,

assume that P and PX satisfy all knowledge axioms. Take (ω, x). Since both P and PX

satisfy the Truth Axiom, it is true that (ω, x) ∈ P (ω) × PX(x) = P ∗(ω, x). In order to

prove that P ∗ satisfies the Positive and Negative Introspection Axioms, take (ω1, x1) and

assume that (ω2, x2) ∈ P ∗(ω1, x1). Thus, ω2 ∈ P (ω1) and x2 ∈ PX(x1). In consequence,

P (ω1) = P (ω2) and PX(x1) = PX(x2). That is, P ∗(ω1, x1) = P ∗(ω2, x2). �

Another natural candidate is a scenario consisting of a two-element state space, Ω = {ω1, ω2}.
Suppose that a possibility correspondence, but not necessarily a product, on Ω×X satisfies

all knowledge axioms. Then, the only scenario in which P represents EBR is the case of

P (ω1) = Ω, with P (ω2) being a strict subset of Ω. Given Lemma 3.1, it is necessary that

P (ω2) = {ω2}, in order to have a chance to rationalize P . However, such a possibility

correspondence violates only the Negative Introspection Axiom, which means that, as shown

in the same lemma, P cannot be rationalized. This implies a contradiction.
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In order to discuss the conditions for P ∗ that guarantee the epistemic rationality of P for

|Ω| > 2, I first must introduce a new concept.

Definition 4.1

Fix (Ω∗, P ∗) with Ω∗ = Ω×X. Two states, ω1 and ω2 in Ω, are connected if there exist x1,

x2, ω̃, and x̃ such that (ω1, x1), (ω2, x2) ∈ P ∗(ω̃, x̃).

Connectedness is at the core of understanding how the transfer of epistemic rationality from

P ∗ to P works. The following result reveals the key implication of connectedness.

Lemma 4.2

Fix (Ω∗, P ∗) with Ω∗ = Ω×X. Let P be a possibility correspondence on Ω that is generated

by P ∗. Assume that P ∗ satisfies the Truth Axiom. Then, ω1 and ω2 are connected if and

only if ω1 ∈ P (ω2).

Proof of Lemma 4.2: First suppose that ω1 and ω2 are connected. Hence, there are x1, x2,

ω̃, and x̃ such that (ω1, x1), (ω2, x2) ∈ P ∗(ω̃, x̃). Since P ∗ satisfies the Truth Axiom, it is

true that P ∗(ω̃, x̃) = P ∗(ω2, x2). Thus, (ω1, x1) ∈ P ∗(ω2, x2), which, by construction of P ,

implies that ω1 ∈ P (ω2). Next assume that ω1 ∈ P (ω2). Again by construction of P , this

implies that, for some x1, (ω1, x1) must belong to P ∗(ω2, x2) for some x2. Due to the Truth

Axiom, (ω2, x2) ∈ P ∗(ω2, x2). But this implies that (ω1, x1), (ω2, x2) ∈ P ∗(ω2, x2), which is a

definition of connectedness. �

I close this paper with the proposition that identifies the necessary and sufficient condi-

tions for P to violate the introspection axioms. Essentially, transitivity of connectedness is

required.

Proposition 2

Fix (Ω∗, P ∗) with Ω∗ = Ω×X. Let P be a possibility correspondence on Ω that is generated

by P ∗. Assume that P ∗ satisfies all knowledge axioms. The following are then equivalent:

1. There are states ω1, ω2, and ω3 such that: (a) ω1 and ω2 are connected, (b) ω2 and ω3

are connected, and (c) ω1 and ω3 are not connected.

2. There are states ω1 and ω2 such that P (ω1) ∩ P (ω2) 6= ∅ and P (ω1) 6= P (ω2).
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Proof of Proposition 2: 1. Assume (1). Since ω1 and ω2 are connected, Lemma 4.2 tells that

ω1 ∈ P (ω2) and ω2 ∈ P (ω1). Hence, P (ω1)∩P (ω2) 6= ∅. Similarly, ω3 ∈ P (ω2). However, ω1

and ω3 are not connected. Lemma 4.2 again implies that ω3 6∈ P (ω1). Thus, P (ω1) 6= P (ω2).

2. Assume (2). Two cases then need to be considered. First, suppose that ω1 and ω2 are

connected. As such, (a) is already satisfied. Since P (ω1) and P (ω2) differ, there must be ω3

such that either ω3 ∈ P (ω1) and ω3 6∈ P (ω2) or ω3 ∈ P (ω2) and ω3 6∈ P (ω1). Without loss

of generality, I presume that the latter holds. Due to Lemma 4.2, this implies that ω2 and

ω3 are connected, while ω1 and ω3 are disconnected. Hence, both (b) and (c) hold. Second,

suppose that ω1 and ω2 are disconnected which, after relabeling the states, yields condition

(c). Hence, ω1 6∈ P (ω2) and ω2 6∈ P (ω1). Since P (ω1) and P (ω2) are not disjoint, there must

be ω3 such that ω3 ∈ P (ω1) and ω3 ∈ P (ω2). By Lemma 4.2, ω1 and ω3 are connected, and

ω2 and ω3 are connected. After renaming the states, this yields conditions (a) and (b). �
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Halpern, J. Y. and L. C. Rêgo (2008): “Interactive Unawareness Revisited,” Games

and Economic Behavior, 62, 232–262.

Heifetz, A., M. Meier, and B. Schipper (2006): “Interactive Unawareness,” Journal

of Economic Theory, 130, 78–94.

——— (2008): “A Canonical Model for Interactive Unawareness,” Journal of Economic

Theory, 62, 304–324.

Hughes, G. and M. Cresswell (1984): A Companion to Modal Logic, London, UK:

Methuen.

——— (1996): A New Introduction to Modal Logic, London, UK: Routledge.

Karni, E. and M.-L. Vierø (2013): “Reverse Bayesianism: A Choice-Based Theory of

Growing Awareness,” American Economic Review, 103, 2790–2810.

Li, J. (2009): “Information Structures with Unawareness,” Journal of Economic Theory,

144, 977–993.

Modica, S. and A. Rustichini (1999): “Unawareness and Partitional Information Struc-

tures,” Games and Economic Behavior, 27, 265–298.

Rubinstein, A. (1998): Modeling Bounded Rationality, Cambridge, MA: The MIT Press.

Savage, L. J. (1972): The Foundations of Statistics, New York, NY: Dover Publications

(revised and expanded version of a work originally published by John Wiley & Sons in

1954).

Schipper, B. C. (2013): “Awareness-Dependent Subjective Expected Utility,” Interna-

tional Journal of Game Theory, 42, 725–753.

11


