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Abstract

State space, a key element of the Subjective Expected Utility (SEU) theory, is

not observable. This implies that, in order to test the SEU theory, it is necessary

to assume some state space. Consequently, if the SEU theory is rejected, then it is

appropriate to conduct a robustness check; that is, to search for a different state space

and a probability over that state space which together do not lead to the rejection of

the SEU theory. To find such state space and probability means to SEU-rationalize

the agent’s behavior. I show how to conduct the process of SEU-rationalization and

determine when an SEU-rationalization is possible.
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1 Introduction

Like the majority of theories in the literature on uncertainty/ambiguity, the Subjective

Expected Utility (SEU) theory developed by Leonard J. Savage (Savage (1972)) begins with

a state space Ω with a generic element ω, and a set of consequences X with a generic element

x. Then, there is a set of acts (functions from Ω to X) F with a generic element f . A binary

order % is defined over F , and the axioms imposed on % guarantee the existence of an SEU

representation of %. To test the SEU theory means to verify whether % satisfies the Savage

axioms.

Unfortunately, as it has been noted in the literature,1 the state space is not observable and,

consequently, is not part of the researcher’s (hereafter, referred to as “he”) data. This implies

that the researcher is unable to test the SEU theory because with no state space there is no

set of acts, and with no set of acts there is no binary order to be tested.

If the researcher assumes a specific choice theory, then he might be able to derive the state

space from the agent’s (hereafter, referred to as “Ann” or “she”) observable choices. For

example, Proposition 3 in Schipper (2013) might help to conduct such an exercise under the

assumption that the agent satisfies the SEU theory. But assuming a theory to derive the

agent’s state space, and then using that state space to test the very theory that has just

been assumed is, obviously, an inappropriate approach.

In what I call the standard approach to testing the SEU theory, the researcher implicitly

assumes some state space Ω. But what state space should he assume? Economic theory

provides no answer to this question, a problem Savage already noticed sixty years ago: “I

am unable to formulate criteria for selecting these small worlds and indeed believe that

their selection may be a matter of judgment and experience about which it is impossible to

enunciate complete and sharply defined general principles” (Savage (1972, p. 16)).

If the researcher follows the standard approach and rejects the SEU theory, then his conclu-

sion is not unconditionally valid. Rather, his conclusion depends on the state space Ω that

he assumed at the start, and it would be more appropriate to say that the SEU theory is

rejected conditional on the state space being Ω. It is possible that there exist a different

state space Ω̃ and a probability measure λ̃ over Ω̃ which together do not lead to the rejection

of the SEU theory.

For example, consider the two-urn Ellsberg experiment. With a typically assumed state

1See Billot and Vergopoulos (2014), Blume et al. (2006), Blume et al. (2009), Epstein (2010), Gilboa

(2009), Gilboa and Schmeidler (2004), Grant et al. (2015), Karni (2008), and Machina (2003).
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space, this experiment rejects the SEU theory. However, Kadane (1992) shows that the

experiment fits within the SEU framework as long as the agent assigns an arbitrarily small

probability to the experimenter being malevolent. It does not seem unreasonable to assume

that, from the agent’s perspective, the experimenter is malevolent. After all, there is nothing

in this experiment’s design that prevents the agent from having such a belief. Hence, with

a different state space, the two-urn Ellsberg experiment does not reject the SEU theory.

Since the state space Ω is assumed rather than derived (from data or theory), it is only

appropriate to conduct a robustness check. That is, the researcher should verify whether

it is possible to construct a new state space Ω̃ and a probability λ̃ over Ω̃ in such a way

that the agent’s choices appear to be in accordance with the SEU theory. If the researcher

constructs such Ω̃ and λ̃, then I say that he is able to SEU-rationalize the agent’s behavior.

The standard approach does not include any robustness check. In this paper, I fill the gap

by showing how to conduct the process of SEU-rationalization and determining when an

SEU-rationalization is possible.

In section 2, I present and analyze the process of SEU-rationalization. In section 3, I apply

my procedure to the classical three-color Ellsberg experiment, which is the most popular

example of a violation of the SEU theory. I show how to SEU-rationalize the behavior

observed in this experiment. Section 4 discusses the relevant literature. Section 5 concludes.

2 SEU-rationalization

I consider the researcher who follows the standard approach to testing the SEU theory, rejects

the SEU theory, and would like to conduct a robustness check. The quadruple (Ω, X,F ,%)—

a state space Ω, a set of consequences X, a set of acts F , and a binary order % over F—is

taken as given and constitutes the researcher’s benchmark data set.

The objective of SEU-rationalization is to translate the original (Ω, X,F ,%) into a new

(Ω̃, X̃, F̃ , %̃) and construct a probability measure λ̃ over Ω̃ such that %̃ has an SEU rep-

resentation with respect to λ̃. This new (Ω̃, X̃, F̃ , %̃) is a re-interpretation of the origi-

nal (Ω, X,F ,%). Obviously, allowing for any (Ω̃, X̃, F̃ , %̃) turns the procedure of SEU-

rationalization into a trivial and uninteresting exercise. I allow to change only the state

space. This implies that several conditions must be satisfied.

First, I require to keep the same set of consequences (condition 1 in Definition 2.1). Second,

F and % must be consistently translated into F̃ and %̃, respectively (conditions 2 and 3 in
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Definition 2.1).

Consistency between F̃ and F means that the perception of acts does not change. Since

there is a new state space Ω̃, there is a new set of acts F̃ with a generic element f̃ : Ω̃→ X.

Take f that is translated into f̃ . I require that f̃ and f are perceived in the same way.

Observe that f and f̃ are defined on different domains. Hence, in order to compare f and

f̃ it is necessary to look at their common codomain X. Let Xf , a subset of the range of

f , be the collection of all possible consequences associated with act f . If x ∈ Xf , then the

agent perceives that such a consequence can be obtained if she chooses f . I assume that

the researcher’s data set includes one Xf for each f ∈ F . Note that f̃ and λ̃ generate the

probability measure λ̃f on X. The support of that measure is the collection of all possible

consequences associated with act f̃ . I say that f is consistently translated into f̃ if the

support of λ̃f is precisely Xf .

Condition 3 in Definition 2.1 requires that %̃ be consistent with %; that is, f̃ %̃ g̃ if and only

if f % g. This implies that the ranking of acts does not change.

Let � and ∼ denote the strict and indifference part of %, respectively. Let fx be a constant

act that generates x (i.e., f(ω) = x for each ω). Let fmax f denote the constant act that yields

the best possible consequence associated with f . Formally, max f ∈ Xf and fmax f % fx for

each x ∈ Xf . Let fmin f be defined in a similar way.

Definition 2.1 SEU-rationalization.

Fix a quadruple (Ω, X,F ,%). For each f ∈ F , fix a set Xf . To SEU-rationalize a binary

order % means to construct a quadruple (Ω̃, X̃, F̃ , %̃) and a probability measure λ̃ over Ω̃

such that:

1. X̃ = X.

2. λ̃ and f̃ generate a probability measure on X such that its support is Xf .

3. f̃ %̃ g̃ if and only if f % g.

4. %̃ has an SEU representation with respect to λ̃. That is, there exists u : X → R such

that %̃ is represented by Ṽ : F̃ → R, defined as Ṽ (f̃) :=
∑

ω̃∈Ω̃ u(f̃(ω̃))λ̃(ω̃).

Below, I present the assumptions imposed on the triple (X,F ,%) which allow to SEU-

rationalize a given binary order %. There are no restrictions on Ω because it is the state

space that is to be changed.
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Assumption 1

1. X and F are finite.

2. % is a complete and transitive binary order over F .

3. For each x ∈ X, there is fx ∈ F .

Assumption 2

For each f ∈ F , if fmax f � fmin f , then fmax f � f � fmin f .

Assumption 1.1 is a rather natural assumption given that data sets are finite. Nevertheless,

in the appendix, I replicate my result allowing for infinite sets of consequences and acts.

Assumption 1.2, combined with Assumption 1.1, guarantees the existence of utility repre-

sentation of %, V . The purpose of having constant acts (Assumption 1.3) is, obviously, to

construct a utility function u on the set of consequences; u(x) := V (fx). Note that Assump-

tion 2 can be seen as an extension of the Simple Dominance Axiom introduced by Barberà

(1977), which holds that {x} � {y} implies {x} � {x, y} � {y}.

The following proposition is the main result of this paper.

Proposition 1

Fix a quadruple (Ω, X,F ,%). For each f ∈ F , fix a set Xf . If Assumptions 1 and 2 hold,

then an SEU-rationalization of % is possible.

I prove Proposition 1 by construction. I develop a two-stage procedure of SEU-rationalization

and show that a given binary order % can be SEU-rationalized if Assumptions 1 and 2 are

satisfied.

First stage (from acts to options). In the first stage, transform the set of acts F into

the set of options, denoted by F̂ . An option f̂ is defined as a pair (f,Xf ), where f is the

act (the option’s name) and Xf is the collection of consequences associated with act f .

To understand why f is transformed into (f,Xf ) rather than Xf alone, consider a bet on

the next winner of the U.S. presidential elections. There are two acts: a Democrat, denoted

by fD, and a Republican, denoted by fR. Suppose that picking the winner yields $100,

while picking the loser costs the agent $50. Each act is associated with the same set of

consequences, that is, XfD = XfR = {$100,−$50}. If the acts were to be represented only
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by the associated sets of consequences, then fD and fR would be perceived as the same object,

or it would be necessary to assume that the agent is indifferent between two acts whenever

their associated sets of consequences are the same. As the betting example suggests, this is

generally not a correct approach; hence, a name is included in the definition of an option.

Next, construct the binary order %̂ on F̂ in a consistent way from %: f̂ %̂ ĝ if and only if

f % g. Let �̂ and ∼̂ denote the strict and indifference part of %̂, respectively. Let f̂x be

an option generated by a constant act fx.

Note that constructing (X, F̂ , %̂) from (X,F ,%) is always possible; that is, the assumptions

presented above are irrelevant to accomplish the first stage of SEU-rationalization. However,

they are important in the second stage.

Second stage (from options to acts). The second stage begins with the triple (X, F̂ , %̂)

as derived in the first stage. First, construct a utility function V̂ defined over F̂ , which exists

because of Assumption 1. This assumption also makes it possible to uniquely define a utility

function u over X as u(x) := V̂ (f̂x).

For each option f̂ , construct a probability measure λ̂f defined overX such that (i) the support

of λ̂f is Xf , and (ii) V̂ can be reconstructed as V̂ (f̂) =
∑

x∈Xf
u(x)λ̂f (x). The construction

of λ̂fs is based on the repetitive use of the Intermediate Value Theorem. Take f̂ such that

Xf = {x1, ..., xK}. Without loss of generality, assume that f̂x1 �̂ ... �̂ f̂xK . Assumption 2

indicates that f̂x1 �̂ f̂ �̂ f̂xK . However, because of Assumption 1, it is known how the agent

ranks f̂ in comparison with each f̂xn for n = 1, ..., K. Next, without loss of generality,

assume that f̂x1 �̂ f̂ �̂ f̂x2 . Hence, it is true that f̂x1 �̂ f̂ �̂ f̂xn for each n = 2, .., K. The

Intermediate Value Theorem says that, for each n = 2, .., K, there is an αn ∈ (0, 1) such that

V̂ (f̂) = u(x1)αn + u(xn)(1 − αn). Now, take β2, ..., βK ∈ (0, 1) such that β2 + ... + βK = 1,

and observe that β2[u(x1)α2 + u(x2)(1− α2)] + ...+ βK [u(x1)αK + u(xK)(1− αK)] = V̂ (f̂).

This gives V̂ (f̂) =
∑

x∈Xf
u(x)λ̂f (x), where λ̂f (x1) = β2α2 + ...+βKαK and, for n = 2, ..., K,

λ̂f (xn) = βn(1−αn). Each element of the set λ̂f = {λ̂f (x1), ..., λ̂f (xK)} is a number in (0, 1),

and their sum is one. That is, λ̂f denotes a desired probability.

The state space Ω̃ is defined as a product of Xfs. That is, Ω̃ = ×f∈FXf . Defining a

state space in this way implies that a state is a function from the set of acts to the set of

consequences (see Gilboa (2009), Karni and Schmeidler (1991), Karni and Vierø (2013), and

Schmeidler and Wakker (1987)). The probability measure λ̃ over Ω̃ is built as a product

measure of the probability measures λ̂fs. The set of new acts F̃ is derived from the set of

options F̂ by defining f̃ : Ω̃ → X as a projection function. The binary order %̃ on F̃ is

constructed in a consistent way from %̂: f̃ %̃ g̃ if and only if f̂ %̂ ĝ. Finally, define Ṽ : F̃ → R
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as Ṽ (f̃) :=
∑

ω̃∈Ω̃ u(f̃(ω̃))λ̃(ω̃).

Since λ̃ is a product measure and f̃ is a projection function, they induce a probability measure

on X that is the same as λ̂f (condition 2 in Definition 2.1). Note that %̃ is constructed in a

consistent way from % (condition 3 in Definition 2.1). By construction of λ̃ and f̃ , it follows

that Ṽ (f̃) = V̂ (f̂). This implies that %̃ has an SEU representation (condition 4 in Definition

2.1). This ends the proof of Proposition 1.

2.1 Analysis of Assumption 2

It is crucial that Assumption 2 be formulated in terms of �, instead of %. Take f with

Xf = {x, y} where fx � fy. If f ∼ fy, then the agent must assign probability 1 to y.

However, this would violate the fact that the agent considers both x and y to be possible

when she chooses f .

In order to better understand the limits imposed by Assumption 2, consider the following

two possible violations. First, suppose that the agent prefers fmin f to f . She does not want

to try to improve her well-being, even though there are no costs involved in attempting this.

After all, if she chooses f , the worst possible result is min f . Next, consider the agent who

prefers f to fmax f . Instead of choosing the best possible consequence that f can generate,

which is max f , the agent picks f .

Although Assumption 2 may appear to be an obvious and harmless requirement, I argue that

reasonable violations of Assumption 2 are possible. Consider the agent’s problem concerning

her choice of destination for her next summer vacation. The consequences represent different

levels of satisfaction derived from a summer trip: x1 (good) and x2 (bad). The acts are

destinations: g (Georgia), h (Hawaii), and i (Idaho), with Xg = {x1}, Xh = {x1, x2}, and

Xi = {x2}. I consider two agents, Ann and Bob. Deciding between Hawaii and Georgia,

Ann chooses to go to Hawaii which she has never visited. Since Ann strictly prefers Hawaii

over Georgia, her behavior violates Assumption 2. This choice may appear to be puzzling.

However, visiting Hawaii means not only having a vacation but also learning what a vacation

in Hawaii means. Ann evaluates her acts by their weighted sum, V (f) = EU(f) + β|Xf |,
where EU(f) is the expected utility derived from f and |Xf | is a cardinality of Xf . (In

this context, cardinality can be interpreted as a measure of how well the agent knows f .) A

parameter β measures the importance of learning. Ann likes to learn, and her β is strictly

bigger than zero. Alternatively, consider Bob, who prefers Idaho over Hawaii. For Bob,

going to Hawaii will guarantee an expected value that is at least the same as a trip to Idaho.
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However, Bob’s β is negative because he dislikes learning and prefers to stick to what he

already knows best. In consequence, he, like Ann, violates Assumption 2.

3 SEU-rationalization of the three-color Ellsberg ex-

periment

Consider the three-color Ellsberg experiment. In the urn, there are three balls, and only one

of them is red. Each of the remaining two can be either green or blue. However, the number

of green balls in the urn is unknown. One ball will be drawn from the urn. The typically

assumed state space is Ω = {R,G,B}, where the letter indicates which ball will be drawn,

and the set of consequences X consists of two elements, S(uccess) and F (ailure). The agent

has two decisions to make: choose between a bet on a red ball fr and a bet on a green ball

fg (the agent picks fr), and choose between a bet on a red or blue ball frb and a bet on a

green or blue ball fgb (the agent picks fgb).

fr � fg and fgb � frb (1)

Assuming that the state space is Ω = {R,G,B} implies that the binary order depicted in

(1) is inconsistent with the SEU theory (Table 1).

fr fg fgb frb probability

R S F F S —

G F S S F —

B F F S S —

Table 1

The procedure of SEU-rationalization requires, first, to take Table 1 and translate it into

the set of options. This yields f̂r, f̂g, f̂gb, and f̂rb such that Xr = Xg = Xrb = Xgb = {S, F}.
Define V̂ and u in the way that agrees with (1): V̂ (f̂r) = 3, V̂ (f̂g) = 1, V̂ (f̂gb) = 4,

V̂ (f̂rb) = 2, u(S) = 5, and u(F ) = 0. Define the probabilities associated with each option:

λ̂fr(S) = 0.6, λ̂fg(S) = 0.2, λ̂fgb(S) = 0.8, and λ̂frb(S) = 0.4.

Next, construct the state space Ω̃ = {S, F}× {S, F}× {S, F}× {S, F}. Each state consists

of four coordinates. Also, construct the probability λ̃ over Ω̃ as the product measure of λ̂fr ,
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λ̂fg , λ̂fgb , and λ̂frb . Finally, transform the set of options into the set of new acts by defining

the new acts as projection functions. For example, option f̂r becomes act f̃r : Ω̃ → X,

defined as f̃r(ω̃) = S if and only if the first coordinate of ω̃ is S. This yields Table 2.

f̃r f̃g f̃gb f̃rb probability f̃r f̃g f̃gb f̃rb probability

ω̃1 S S S S 0.0384 ω̃9 F S S S 0.0256

ω̃2 S S S F 0.0576 ω̃10 F S S F 0.0384

ω̃3 S S F S 0.0096 ω̃11 F S F S 0.0064

ω̃4 S S F F 0.0144 ω̃12 F S F F 0.0096

ω̃5 S F S S 0.1536 ω̃13 F F S S 0.1024

ω̃6 S F S F 0.2304 ω̃14 F F S F 0.1536

ω̃7 S F F S 0.0384 ω̃15 F F F S 0.0256

ω̃8 S F F F 0.0576 ω̃16 F F F F 0.0384

Table 2

Table 2 has sixteen rows, with each denoting a state. Columns f̃r, f̃g, f̃gb, and f̃rb show the

realizations of bets at a given state. For example, at ω̃1 all bets yield S. The probability

column depicts the probability that a given state will occur.

However, Table 2 allows for states which are not reasonable. For example, it is not reasonable

that a ball is simultaneously red and green (state ω̃1). In the suggested SEU-rationalization,

there are 13 unreasonable states and 3 reasonable states. The three reasonable states are ω̃7

(i.e., red ball is drawn), ω̃10 (i.e., green ball is drawn), and ω̃13 (i.e., blue ball is drawn). These

are the states R, G, and B, respectively, from the state space Ω (see Table 1). The total

mass assigned to these three states is only 0.1792. For this reason, this SEU-rationalization is

not satisfactory. Therefore, the obvious question to ask is: What is the smallest probability

assigned to the unreasonable states that would still allow for the SEU-rationalization of the

Ellsberg experiment? The answer is: As small as desired. Let ε < 0.3 be the total mass

assigned to unreasonable states.
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f̃r f̃g f̃gb f̃rb probability

R S F F S 1
10
− 1

3
ε

G F S S F 1
10
− 1

3
ε

B F F S S 8
10
− 1

3
ε

Z S F S F ε > 0

Table 3

In Table 3, there is only one unreasonable state Z. It is easy to verify that this SEU-

rationalization captures the choices in (1): Ṽ (f̃r) = 5
10

+ 10
3
ε > Ṽ (f̃g) = 5

10
− 5

3
ε; and

Ṽ (f̃gb) = 45
10

+ 5
3
ε > Ṽ (f̃rb) = 45

10
− 10

3
ε.

The existence of state Z in Table 3 could be due to the agent’s being unaccustomed to decision

problems expressed in terms of an urn and some balls. As Gilboa (2009) writes, “David

Schmeidler often says, ‘Real life is not about balls and urns.’ Indeed, important decisions

involve war and peace, recessions and booms, diseases and cures.” An ε-small probability

assigned to Z can be interpreted as a manifestation of the agent’s misunderstanding the

problem or miscalculating the probability.

If the experiment’s subjects are college students, which is often the case in economics exper-

iments, then the analysis conducted by psychologists suggests that such a misunderstanding

or miscalculation is not unlikely. For example, Standing (2006) finds that only 33 percent

of undergraduate students at one liberal arts college achieved a perfect score in a test that

focused on very elementary skills: the hardest task was to compute 92 × 32 (and students

were permitted to use unlimited time and write a draft work). In Standing et al. (2006),

a similar test was applied to undergraduate students majoring in business and economics.

The hardest question was to compute (36 × 7) + (33 × 7), and only 40 percent of subjects

answered all questions correctly. From LeFevre et al. (2014), we learn that basic arithmetic

skills among college students have been declining from 1993 to 2005. If the students struggle

with adding or multiplying natural numbers, it only seems natural to expect that they make

mistakes in computing subjective probabilities.

A typical explanation of the three-color Ellsberg experiment allows only for the reasonable

states (i.e., Ω = {R,G,B}) but assumes that the agent behaves as if following a mathe-

matically sophisticated theory (at least, more sophisticated than the SEU theory). Here, I

suggest an alternative explanation: the agent behaves as if following the SEU theory but she
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assigns an arbitrarily small probability to an unreasonable state (Table 3). Which explana-

tion of the agent’s behavior is “better”? Unfortunately, there is no clear answer. Gilboa and

Samuelson (2012) observe that in situations like this, “people typically bring subjective cri-

teria to bear in making this choice (i.e., choosing among theories), tending to select theories

that seem a priori reasonable, intuitive, simple, elegant, familiar, or that satisfy a variety of

other considerations.” Consequently, in the case of the three-color Ellsberg experiment, the

reader is left to use subjective criteria to decide which explanation seems “better.”

However, I need to stress that from the empirical perspective—that is, from a perspective

that bases conclusions only on observable data—the Ellsberg experiment does not reject

the SEU theory. Although it is possible to test whether or not Z is a Savage-null event

(and if it is, then the agent does not assign even an ε-small probability to Z), such a test

does not contradict my claim. Note that when I use the phrase the Ellsberg experiment, I am

referring to an experiment consisting of the four alternatives and two choices described above

in (1). For clarity, I call this the original Ellsberg experiment. Testing whether or not Z is

Savage-null requires that the researcher expand the experiment by adding new alternatives

and observing more than two choices. This would not be the original Ellsberg experiment

(which my claim is about) but rather the extended Ellsberg experiment.

Suppose that the extended Ellsberg experiment shows that not only Z but also all the

remaining unreasonable states are Savage-null. This would indicate that the procedure

of SEU-rationalization proposed in this paper cannot defend the SEU theory against the

evidence provided by the original Ellsberg experiment. This also indicates how to design

a robust experiment to test the SEU theory: in order to survive the procedure of SEU-

rationalization, an experiment that is to reject the SEU theory must be nested in a bigger

experiment which rules out all states that can be used by SEU-rationalization.

4 Related literature

What differentiates my paper from the literature on choice theory under uncertainty/ambiguity

is that my ambition is not to introduce a new theory, but rather to develop a procedure which

allows the researcher to not reject the SEU theory. One of the main objectives of the theories

is to have the unique representation of the agent’s belief (additive probability, non-additive

probability, set of probabilities). In contrast, neither the state space Ω̃ nor the probability

λ̃ constructed to SEU-rationalize the agent’s behavior is unique. There could be another

state space Ω′ and another probability λ′ that would also do the job. In fact, even for a
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given Ω̃, the probability λ̃ is not unique because there could be a distinct λ̃∗ such that Ω̃

and λ̃∗ also lead to an SEU-rationalization. The non-uniqueness is a result of constructing

both a state space and a probability rather than only a probability. However, the lack of

uniqueness is not a concern in this paper. This is because the main goal is to find some state

space with some probability such that the agent appears to be following the SEU theory.

In order to emphasize that I am not constructing a new theory, I have been employing the

term assumption, rather than the term axiom.

Two papers which are closely related to this paper are Gilboa and Schmeidler (1994) and

Lipman (1999). Gilboa and Schmeidler (1994) considers an agent represented by the Choquet

Expected Utility (Schmeidler (1989)) and shows that “the non-additivity of the “probability”

υ may be explained by “omitted” states of the world. If those were introduced into the model

explicitly, the non-additivity would disappear.”. The first difference between my paper and

Gilboa and Schmeidler (1994) is that my key requirement (Assumption 2) is weaker than

assuming the Choquet Expected Utility theory. In addition, the state space Ω̃ in my paper

is constructed from the subsets of the set of consequences, while in Gilboa and Schmeidler

(1994) the state space is an extension of a pre-assumed state space. Lipman (1999) considers

a construction of state space that begins with the set of pieces of information (“propositions

in logic, statements in English or another language, or mathematical formulas”) denoted by

Φ. A state is defined as a subset of Φ. Lipman (1999) relaxes the assumption of the agent

being logically omniscient, and determines conditions under which the agent’s behavior fits

within the SEU theory. My paper differs from Lipman (1999) since, in general, my procedure

need not depend on the violation of logical omniscience. Moreover, in contrast to my paper,

Lipman (1999) assumes that the researcher knows the set Φ which implies that the researcher

knows how the agent constructs her state space.

Although it does not develop a new theory, this paper associates alternatives with subsets

of the set of consequences X and, consequently, is related to the literature concerned with

an agent who ranks sets of objects. (See Barberà et al. (2004) for the most complete review

of this literature.) The models in this literature consist of two stages. In the first stage, the

agent chooses a subset of X. What happens at the second stage divides these models into

the following two groups. Group A consists of models in which, at the second stage, Nature

picks the final consequence (see section 3 in Barberà et al. (2004)). Group B consists of

models in which, at the second stage, the agent picks the final consequence (see section 4 in

Barberà et al. (2004)).

The models in both of these groups share one feature, which separates them from the setup

I propose. They all consider the agent’s binary order to be defined over the subset of the
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power set of X, a construction that implicitly assumes that two alternatives with the same

set of consequences should be perceived as the same object or, at least, that the agent should

be indifferent between them. However, as noted in section 2, this approach is not appropriate

for this paper. Thus, in this paper, the agent ranks options, rather than subsets of X.

The models in Group A are concerned with “complete uncertainty” which, according to

Barberà et al. (2004), “refers to a situation where the agent knows the set of possible con-

sequences of an action but cannot assign probabilities to those outcomes.” For this reason,

these models are not related to this paper. However, one important set of models on com-

plete uncertainty can be interpreted as if they were considering an agent who constructs

probabilities over the subsets of X. These are the models which build on the concept of

Hurwicz’s α-criterion (see Arrow and Hurwicz (1972) and Hurwicz (1951)) and develop the

idea of evaluating sets by taking only their best and worst consequences into consideration.2

A subset Y of X is evaluated by Vα(Y ) = α(Y ) · u(maxY ) + (1 − α(Y )) · u(minY ), where

α is a function from the set of subsets of X to (0, 1), and where maxY denotes the best

element of Y , and minY the worst. The function α can be interpreted as a probability on

Y . This functional representation resembles the result obtained by Ghirardato (2001). In

his model, the state space Ω is fixed, and the agent perceives acts as set-valued functions.

In fact, Vα can be considered to be an extreme version of Ghirardato (2001), in which the

agent perceives no state space. However, such a representation is not appropriate for the

purpose of this paper, since it does not capture the agent’s perception of alternatives. Since

Y represents all consequences deemed possible, I focus on the probability measures with

support Y . In Vα, however, the support of α is not Y but rather {maxY,minY }.

For Group B, the relevant research is in the literature on “preference for flexibility” that be-

gins with Kreps (1979) and examines the agent who is not sure about her future preferences.

This uncertainty is captured by a state space S in which a state s represents a possible

future binary order over set X. My paper implicitly assumes that the agent does not face

uncertainty regarding her future self. Consequently, the construction of the state space here

differs from the construction proposed in Kreps (1979), in which the agent evaluates a subset

Y of X by V (Y ) =
∑

s∈S maxy∈Y u(s, y), where u(s, y) is an ex-post, state-dependent utility

function. In contrast, in my paper a menu is evaluated by its subjective expected utility, and

the utility over X is state-independent. Kreps (1992) reinterprets the original “preference

for flexibility” model as representing the agent who faces unforeseen contingencies—that is,

2See, for instance, Barberà et al. (1984), Barberà and Pattanaik (1984), Ben Larbi et al. (2010), Bossert

(1989), Bossert et al. (1994), Bossert et al. (2000), Dutta and Sen (1996), Kannai and Peleg (1984), Nehring

and Puppe (1996), Olszewski (2007), Pattanaik and Xu (1998), and Pattanaik and Xu (2000).
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the agent who is unable to account for all possible future uncertainties. In contrast, my

paper does not represent the agent who lacks a complete picture of uncertainty, but rather

the researcher who does not know which uncertainties the agent has taken into account.

5 Conclusions

If the researcher, who tests the SEU theory, assumes some state space Ω and rejects the SEU

theory, then his conclusion is not unconditionally valid. There may exist an alternative state

space Ω̃ and a probability measure λ̃ over Ω̃ which together do not lead to the rejection of

the SEU theory. If such Ω̃ and λ̃ exist, then the agent’s behavior is SEU-rationalizable. This

paper shows how to SEU-rationalize the agent’s behavior and when an SEU-rationalization

is possible.

I believe that the assumptions which allow to SEU-rationalize the agent’s behavior are

not demanding. It is difficult to consider violations of Assumption 1—incompleteness and

intransitivity—as valid reasons to reject the SEU theory. I leave it for the reader to decide

whether possible violations of Assumption 2 constitute convincing or interesting arguments

against the SEU theory.

I would like to stress that if the agent’s behavior can be SEU-rationalized, then this does

not mean that the SEU theory has been accepted and non-SEU theories3 rejected. Rather,

the correct conclusion would be that the SEU theory has not been rejected and that other

theories may also be able to explain the agent’s behavior by relying on the assumption of a

distinct state space. Consequently, instead of saying that my procedure allows the researcher

to accept the SEU theory, I say—more precisely—that it allows him to not reject it. For

this reason, this paper should not be interpreted as a critique of non-SEU theories. Rather,

it is a critique of motivating such theories by only indicating the evidence which rejects the

SEU theory.

6 Appendix

I extend my result to infinite sets of acts and consequences. Fix (Ω, X,F ,%) with % violating

the SEU theory. I impose the following assumptions.

3See Amarante (2014), Eichberger and Kelsey (2009), Ghirardato (2010), Gilboa and Marinacci (2011),

and Siniscalchi (2008) for a review of the non-SEU literature.
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Assumption 3

1. X is a separable metric space.

2. If Xf is uncountable, then Xf is a closed subset of X.

3. F is a separable metric space.

4. For each x ∈ X, there is fx ∈ F .

5. % is a complete, transitive, and continuous binary order over F .

Assumption 4

1. For each f ∈ F , there exist fmax f and fmin f .

2. For each f ∈ F , if fmax f � fmin f , then fmax f � f � fmin f .

Remark: Instead of assuming the existence of fmax f and fmin f , one can require that X be a

compact metric space. In that case, Xf , a closed subset of X, is also compact, and since u

is a continuous function, the Weierstrass Theorem dictates that both fmax f and fmin f exist.

Proposition 2

Fix a quadruple (Ω, X,F ,%). For each f ∈ F , fix a set Xf . Assume the Axiom of Choice.

If Assumptions 3 and 4 hold, then an SEU-rationalization of % is possible.

In the first stage of SEU-rationalization, it is necessary to generate the set of options F̂ and

the binary order %̂ on F̂ . Recall that an option f̂ is defined as a pair (f,Xf ) where Xf

is a subset of X interpreted as the collection of all possible consequences associated with

act f (i.e., Xf = f(Ω)). Let λ̂f be a probability measure associated with option f̂ . It is

important that this probability measure captures the agent’s perception of f̂ . In the case of

a countable Xf , if x is considered to be possible when f is chosen, then λ̂f clearly assigns

a nonzero weight to x. However, with uncountable Xf , it is not possible to require that

λ̂f (x) > 0 for each x ∈ Xf . This implies that there is no straightforward definition of the

“possible consequences” for uncountable Xfs. Suppose that X = [0, 1] and Xf = [0, 0.5]. If

λ̂f (0) = 0, then it is not clear whether Xf should be defined as [0, 0.5] or (0, 0.5]. I solve this

problem by implicitly assuming that the agent is indifferent between Xf and the closure of

Xf . Thus, in Assumption 3, I focus only on those uncountable Xfs that are closed in X.
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Consequently, λ̂f is said to capture the agent’s perception about an act whenever the support

of λ̂f is Xf . (Note that if λ is a probability measure defined on a metric space X, then the

support of λ is defined as the smallest closed subset C of X such that λ(C) = 1.) However,

without additional requirements, it is not necessarily true that, for a given Xf , there exists

a probability measure with support Xf . This issue is also resolved by adopting Assumption

3, which requires that an uncountable X is a separable metric space. This guarantees that,

for a given closed subset of X, Xf , there is a probability measure on X with support Xf

(see Exercise 4 in Chapter 7.1 in Dudley (2002)).

Assumption 3 guarantees the existence of V̂ (see Debreu (1954, 1964)), with u defined as

u(x) := V̂ (f̂x). It remains to be proven that (a) for each option there exists a probability

measure λ̂f with support Xf , and (b) that V̂ (f̂) =
∫
X
u(x)dλ̂f .

Let P (X) denote the collection of probability measures on X that are Borel for uncountable

X. Fix f̂ and let Pf (X) be a subset of P (X) that consists of probability measures on X with

support Xf . For countable Xf , the nonemptiness of Pf (X) is obvious. For uncountable Xf ,

the fact that Xf is a closed subset of a metric separable space (Assumption 3) guarantees

the nonemptiness of Pf (X). Let Ψ : P (X) → R be the integral function Ψ(λ) :=
∫
X
udλ.

The remaining part of proof shows that, for a given f̂ , there exists λ̂f ∈ Pf (X) such that

Ψ(λ̂f ) = V̂ (f̂).

Consider an option f̂ such that f̂max f �̂ f̂min f . The idea of the proof is to find two probability

measures, λ1 and λ2, that both belong to Pf (X) such that c1 = Ψ(λ1) < V̂ (f̂) < Ψ(λ1) = c2.

With c1 and c2 in hand, it is possible to find the unique α such that αc1 + (1−α)c2 = V̂ (f̂).

With this α, the desired λ̂f is defined as λ̂f = αλ1 + (1− α)λ2.

It remains to be proven that, for a given f̂ , such probability measures, λ1 and λ2, indeed

exist. Note that due to Assumption 4, Ψ(δmin f ) < V̂ (f̂) < Ψ(δmax f ), where δx is a degenerate

probability measure with mass 1 at x. One way to show that there always is a λ1 such that

Ψ(λ1) < V̂ (f̂) involves proving that there is a sequence of probability measures {λn1} such

that each λn1 ∈ Pf (X) and Ψ(λn1 )→ Ψ(δmin f ). The existence of such a sequence guarantees

that there is some N such that Ψ(δmin f ) < Ψ(λN1 ) < V̂ (f̂). Such a λN1 then becomes the

desired λ1. Since the existence of λ2 is proven in the same way, I focus on λ1.

Consider a countable Xf . I construct {λn1} in the following way. Let λn1 (min f) = 1 − 1
n

and let
∑

x∈Xf\{min f} λ
n
1 (x) = 1

n
. If Xf is finite, with cardinality K, then let λn1 (x) = 1

(K−1)n

for x ∈ Xf \ {min f}. If Xf is infinite, then let Xf = {x, x0, x1, ...}, where x = min f . For

xm, define λn1 (xm) = 1
2n
· 1

2m
. Note that

∑∞
m=0 λ

n
1 (xm) is a convergent geometric series such

that
∑∞

m=0
1

2n
· 1

2m
= 1

n
. With {λn1} determined, it is then possible to compute Ψ(λn1 ) =
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∑
x∈Xf

u(x)λn1 (x); observe that the sum converges, as desired, to Ψ(δmin f ) as n goes to

infinity. Finally, consider an uncountable Xf . As already noted, the fact that X is separable

and Xf is a closed subset of X implies the existence of probability measure λ̂f on X, with

the support Xf . Let λn1 be a weighted measure that assigns 1
n

to λ̂f and 1− 1
n

to δmin f . Each

λn1 then has support Xf , and Ψ(λn1 )→ Ψ(δmin f ) when n→∞.

By the Axiom of Choice, for an arbitrary F̂ , there exists Ω̃ defined as Ω̃ := ×f∈FXf . Let

τ be a finite nonempty subset of F . Let Ω̃τ := ×f∈τXf . Let λ̃τ be the probability measure

on Ω̃τ , constructed as a product of the probability measures λ̂fs. By Proposition V.1.2 in

Neveu (1965), there exists the unique probability measure λ̃ on Ω̃, which agrees with each λ̃τ

on cylinders. An option f̂ is transformed into act f̃ by defining f̃ : Ω̃ → X as a projection

function. Consequently, function f̃ is measurable. The binary order %̃ over F̃ is as f̃ %̃ g̃ if

and only if f̂ %̂ ĝ. Finally, define Ṽ : F̃ → R as Ṽ (f̃) :=
∫

Ω̃
u(f̃(ω̃))dλ̃.

Since λ̃ is a product measure and f̃ is a projection function, they induce a probability measure

on X that is the same as λ̂f (condition 2 in Definition 2.1). Note that %̃ is constructed in

a consistent way from % (condition 3 in Definition 2.1). By the construction of λ̃ and f̃ , it

follows that Ṽ (f̃) = V̂ (f̂). This implies that %̃ has an SEU representation (condition 4 in

Definition 2.1). This ends the proof of Proposition 2.
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